
  
Short Abstract — We present a method for determining the 
structure of a genetic network given temporal measurements of 
gene expression. Correlations in time series data are used to 
determine which genes influence each other and their causal 
relationships. Natural stochastic noise is shown to aid in the 
process of network identification by perturbing the expression 
of genes; the speed and direction at which the noisy signal 
propagates shows how the network is connected. Mathematical 
models of simple genetic networks demonstrate that network 
inference based on correlation data is possible. A library of 
synthetic genetic circuits is being developed to test these 
predictions experimentally.  

I. EXTENDED ABSTRACT 
A focus of recent work in molecular biology is 
understanding the function of genetic networks based on 
their structure [1]. However, finding the structure of a 
genetic network is a challenging problem and predictive 
models for network function rely on its structure being well 
characterized.  
 
Methods for identifying the connectivity of regulatory 
networks have improved as genetic assays have advanced. 
Large-scale network identification has focused on steady 
state measurements and statistical inference algorithms [2-
5]. Alternative approaches for smaller-scale networks have 
been suggested using temporal data [6-7].  
 
We perform network identification by analyzing the cross 
correlation between time series measurements of two genes. 
If a signal takes time to propagate from one gene to the next 
this appears as a lag in the cross correlation function; the 
type of interaction (activation or repression) is reflected in 
the sign. The cross correlation measurement reveals the 
causality, or direction of interaction, between two genes. A 
similar approach was applied previously in metabolic 
networks [8], where the input to the chemical system was 
accurately controlled. Network identification algorithms 
benefit from perturbing the system and measuring its 
response [5, 6]. Examples of perturbations include changing 
initial conditions, varying the environment in which the 
network is measured, or altering genetic pathways through 
gene knock outs.  We take a different approach and rely on 
noise in gene expression as a perturbing force. Traditionally 
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a hindrance, we demonstrate numerically that stochastic 
gene expression is a sufficient perturbation to allow for 
discrimination between network topologies. In parallel, we 
are constructing synthetic genetic networks to test these 
network inference methods experimentally.  
 
Networks are modeled using sets of ordinary differential 
equations with Hill functions representing transcriptional 
control [1]. Model parameters from previous experiments 
are used [9]; noise is modeled with an Ornstein-Uhlenbeck 
process [10] and both intrinsic and extrinsic noise sources 
are included. Model results show that networks with 
different connectivities can be distinguished using noise 
alone to perturb the system. 
 
We are testing these methods experimentally with a library 
of synthetic genetic networks with known circuit topologies. 
Quantitative measurements are taken in single cells and 
traces of fluorescence versus time in each cell are recorded.  
 
Both numerical and preliminary experimental results will be 
presented. 
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